Do Machine Learning Approaches Offer Skill Improvement for Short-Term Forecasting of Wind Gust Occurrence and Magnitude?

Jacob Coburn and Sara C. Pryor

DOI: https://doi.org/10.1175/WAF-D-21-0118.1

Department of Energy, Office of Science, Earth & Environmental Systems Modeling Program Acknowledged Support: No, other Non-DOE EESM source of support

Abstract

Wind gusts, and in particular intense gusts, are societally relevant but extremely challenging to forecast. This study systematically assesses the skill enhancement that can be achieved using artificial neural networks (ANNs) for forecasting of wind gust occurrence and magnitude. Geophysical predictors from the ERA5 reanalysis are used in conjunction with an autoregressive term in regression and ANN models with different predictors, and varying model complexity. Models are derived and assessed for the warm (April–September) and cold (October–March) seasons for three high passenger volume airports in the United States. Model uncertainty is assessed by deriving models for 1000 different randomly selected training (70%) and testing (30%) subsets. Gust prediction fidelity in independent test samples is critically dependent on inclusion of an autoregressive term. Gust occurrence probabilities derived using five-layer ANNs exhibit consistently higher fidelity than those from regression models and shallower ANNs. Inclusion of the autoregressive term and increasing the number of hidden layers in ANNs from 1 to 5 also improve the model performance for gust magnitudes (lower RMSE, increased correlation, and model standard deviations that more closely approximate observed values). Deeper ANNs (e.g., 20 hidden layers) exhibit higher skill in forecasting strong (17–25.7 m s−1) and damaging (≥25.7 m s−1) wind gusts. However, such deep networks exhibit evidence of overfitting and still substantially underestimate (by 50%) the frequency of strong and damaging wind gusts at the three airports considered herein.

Leave a Reply